SOLUTION OF LARGE UNDERDETERMINED LINEAR SYSTEMS FOR A GENERALIZED NON-HOMOGENEOUS NETWORK FLOW PROGRAMMING PROBLEM

L.A. PILIPCHUK AND E.S. VECHARYNSKI

ABSTRACT. We construct a general solution for a system of linear equations corresponding to the system of main constraints for a broad class of generalized non-homogeneous network flow programming problems.

1. Introduction

Let S=(I,U) be a finite oriented connected network without multiple arcs and loops, where I is a set of nodes and U is a set of arcs, $U\subset I\times I(|I|<\infty, |U|<\infty)$. Let $K(|K|<\infty)$ be a set of different types of flow transported through the network S. We assume that $K=\{1,\ldots,|K|\}$. Let us denote a connected network corresponding to a certain type of flow $k\in K$ with $S^k=(I^k,U^k),I^k\subseteq I,U^k=\{(i,j)^k:(i,j)\in \widetilde{U}^k\},\widetilde{U}^k\subseteq U$ - a set of arcs of the network S carrying the flow of type k. Also, we define sets $K(i)=\{k\in K:i\in I^k\}$ and $K(i,j)=\{k\in K:(i,j)^k\in U^k\}$ of types of flow transported through a node $i\in I$ and an arc $(i,j)\in U$ respectively. Let us introduce a subset U_0 of the set U, and let $K_0(i,j)\subseteq K(i,j),(i,j)\in U_0$ be an arbitrary subset of K(i,j) such that $|K_0(i,j)|>1$.

Consider the following linear underdetermined system

(1.1)
$$\sum_{j \in I_i^+(U^k)} x_{ij}^k - \sum_{j \in I_i^-(U^k)} \mu_{ji}^k x_{ji}^k = a_i^k, \quad i \in I^k, \ k \in K,$$

(1.2)
$$\sum_{(i,j)\in U} \sum_{k\in K(i,j)} \lambda_{ij}^{kp} x_{ij}^k = \alpha_p, \ p = \overline{1,q},$$

(1.3)
$$\sum_{k \in K_0(i,j)} x_{ij}^k = z_{ij}, \quad (i,j) \in U_0,$$

where $I_i^+(U^k) = \{j \in I^k : (i,j)^k \in U^k\}$, $I_i^-(U^k) = \{j \in I^k : (j,i)^k \in U^k\}$; $a_i^k, \lambda_{ij}^{kp}, \alpha_p, z_{ij} \in \mathbb{R}, \mu_{ij}^k > 0$ - parameters of the system; $x = (x_{ij}^k, (i,j)^k \in U^k, k \in K)$ - vector of unknowns. We assume that $\sum_{k \in K} |I^k| + q + |U_0| < \sum_{k \in K} |U^k|$ and rank of the system (1.1) - (1.3) is equal to $\sum_{k \in K} |I^k| + q + |U_0|$. Further, we will call (1.1)

the network part, and (1.2) - (1.3) - the additional part, of the system (1.1) - (1.3).

2. Solution of the network part of the system

We split the solution of the system (1.1) into solutions of |K| systems corresponding to a fixed $k \in K$.

Let $U_L = \{U_L^k \subseteq U^k, k \in K\}$ be a support of the network S = (I, U) for system (1.1) [1, 2]. Recall, a cycle $L^k \subseteq S^k$ is called non-singular [1, 3] if $\prod_{(i,j)^k \in L^{k+}} \mu_{ij}^k \neq 0$

 $\prod_{(i,j)^k \in L^{k-}} \mu_{ij}^k, \text{ where } L^{k+}, L^{k-} \text{ - sets of forward and backward arcs respectively}.$

Theorem 1. (Network support criterion.) The set $U_L = \{U_L^k, k \in K\}$ is a support of the network S = (I, U) for system (1.1) iff for each $k \in K$ the network $S_L^k = (I^k, U_L^k)$ is a union $S_L^k = \bigcup_t S_L^{k,t}$ of connectivity components $S_L^{k,t} = (I(U_L^{k,t}), U_L^{k,t})$,

each containing a unique non-singular cycle, $U_L^k = \bigcup_t U_L^{k,t}, I^k = \bigcup_t I(U_L^{k,t}).$

Let us introduce a characterictic vector $\delta^k(\tau,\rho) = (\delta^k_{ij}(\tau,\rho),(i,j)^k \in U^k)$, where $k \in K$ is fixed, entailed by an arc $(\tau,\rho)^k \in U^k \setminus U^k_L$ with respect to the support U^k_L , as a solution vector of the following system:

$$(2.1) \quad \sum_{j \in I_i^+(B_{\tau\rho}^k)} \delta_{ij}^k(\tau, \rho) - \sum_{j \in I_i^-(B_{\tau\rho}^k)} \mu_{ji}^k \delta_{ji}^k(\tau, \rho) = 0, \quad i \in I^k, B_{\tau\rho}^k = U_L^k \cup (\tau, \rho)^k,$$

(2.2)
$$\delta_{\tau\rho}^k(\tau,\rho) = 1, \delta_{ij}^k(\tau,\rho) = 0, \quad (i,j)^k \in U^k \setminus (U_L^k \cup (\tau,\rho)^k).$$

The system of characteristic vectors, entailed by (all) different arcs $(\tau, \rho)^k \in U^k \setminus U_L^k$ is a basis of a solution space of the homogeneous system corresponding to (1.1), where $k \in K$ is fixed. Thus, for a fixed $k \in K$, we represent solutions of the system (1.1) as a sum of a general solution of the corresponding homogeneous system and a partial solution of (1.1):

(2.3)

$$x_{ij}^{k} = \sum_{(\tau,\rho)^{k} \in U^{k} \setminus U_{L}^{k}} x_{\tau\rho}^{k} \delta_{ij}^{k}(\tau,\rho) + \left(\tilde{x}_{ij}^{k} - \sum_{(\tau,\rho)^{k} \in U^{k} \setminus U_{L}^{k}} \tilde{x}_{\tau\rho}^{k} \delta_{ij}^{k}(\tau,\rho)\right), (i,j)^{k} \in U_{L}^{k};$$
$$x_{\tau\rho}^{k} \in \mathbb{R}, \quad (\tau,\rho)^{k} \in U^{k} \setminus U_{L}^{k},$$

where $\tilde{x}^k = (\tilde{x}_{ij}^k, (i, j)^k \in U^k)$ is a partial solution of the system (1.1) for a fixed $k \in K$; $x_{\tau\rho}^k$ are independent variables corresponding to arcs $(\tau, \rho)^k \in U^k \setminus U_L^k$.

3. Decomposition of the system

We define a set $U_B = \{U_B^k \subseteq U^k \backslash U_L^k, k \in K\}, |U_B| = q + |U_0|$ of bicyclic arcs by selecting $q + |U_0|$ arbitrary arcs from the sets $U^k \backslash U_L^k, k \in K$. We denote $U_N = \{U_N^k, k \in K\}, U_N^k = U^k \backslash (U_L^k \bigcup U_B^k), k \in K$. Thus, $U^k = U_L^k \cup U_B^k \cup U_N^k$, where U_L^k, U_B^k, U_N^k are non-intersecting subsets of arcs.

Let us choose the partial solution of (1.1), for a fixed $k \in K$, such that $\tilde{x}_{\tau\rho}^k = 0$, $(\tau, \rho)^k \in U^k \backslash U_L^k$. Substitution of the general solution (2.3), with a partial solution of the form described above, for each $k \in K$, into (1.2) and (1.3) leads to the following system for finding the unknowns $x_B = (x_{\tau\rho}^k, (\tau, \rho)^k \in U_B^k, k \in K)$, ordered according to an arbitrary numbering $t = t(\tau, \rho)^k, (\tau, \rho)^k \in U_B^k, k \in K, t \in \{1, 2, \ldots, |U_B|\}$:

(3.2)
$$\Lambda_{\tau\rho}^{kp} = \lambda_{\tau\rho}^{kp} + \sum_{(i,j)^k \in U_r^k} \lambda_{ij}^{kp} \delta_{ij}^k(\tau,\rho), \quad (\tau,\rho)^k \in U^k \backslash U_L^k,$$

(3.3)
$$\delta_{ij}(B_{\tau\rho}^{k}) = \begin{cases} \delta_{ij}^{k}(\tau,\rho), k \in K_{0}(i,j) \\ 0, k \notin K_{0}(i,j) \end{cases}, (i,j) \in U_{0}, (\tau,\rho)^{k} \in U^{k} \setminus U_{L}^{k}, k \in K,$$

(3.4)
$$\beta_p = A^p - \sum_{k \in K} \sum_{(\tau, \rho)^k \in U_k^k} \Lambda_{\tau\rho}^{kp} x_{\tau\rho}^k, p = \overline{1, q},$$

(3.5)
$$\beta_{q+\xi(i,j)} = A_{ij} - \sum_{k \in K} \sum_{(\tau,\rho)^k \in U_N^k} \delta_{ij}(B_{\tau\rho}^k) x_{\tau\rho}^k, \quad (i,j) \in U_0,$$

(3.6)
$$A^{p} = \alpha_{p} - \sum_{k \in K} \sum_{(i,j)^{k} \in U_{k}^{k}} \lambda_{ij}^{kp} \tilde{x}_{ij}^{k}, p = \overline{1,q},$$

(3.7)
$$A_{ij} = z_{ij} - \sum_{\substack{k \in K_0(i,j), \\ (i,j)^k \in U_L^k}} \tilde{x}_{ij}^k, \quad (i,j) \in U_0.$$

Finally, letting $D^{-1}=(\nu_{l,s};l,s=\overline{1,|U_B|})$, using (2.3) and (3.1), as well as formulas (3.2)-(3.7), we can determine the general solution of (1.1) - (1.3):

$$x_{\tau\rho}^{k} = \sum_{p=1}^{q} \nu_{t,p} \beta_{p} + \sum_{(i,j) \in U_{0}} \nu_{t,q+\xi(i,j)} \beta_{q+\xi(i,j)}, t = t(\tau,\rho)^{k}, (\tau,\rho)^{k} \in U_{B}^{k}, k \in K,$$

$$x_{ij}^{k} = \sum_{(\tau,\rho)^{k} \in U_{N}^{k}} x_{\tau\rho}^{k} \delta_{ij}^{k}(\tau,\rho) + \psi_{ij}^{k} + \tilde{x}_{ij}^{k}, (i,j)^{k} \in U_{L}^{k}, k \in K,$$

$$x_{\tau\rho}^{k} \in \mathbb{R}, (\tau,\rho)^{k} \in U_{N}^{k}, \psi_{ij}^{k} = \sum_{(\tau,\rho)^{k} \in U_{B}^{k}} x_{\tau\rho}^{k} \delta_{ij}^{k}(\tau,\rho).$$

References

- [1] Gabasov R., Kirillova F. M.: Methods of linear programming. Part 3. Special problems (in Russian). BGU, Minsk, 1980.
- [2] Pilipchuk L. A., Malakhouskaya Y.V., Kincaid D. R., Lai M.: Algorithms of Solving Large Sparse Underdetermined Linear Systems with Embedded Network Structure. East-West J. of Mathematics. Vol. 4, N°2, p.191–202(2002).
- [3] L. A. Pilipchuk, Yu. H. Pesheva. Decomposition of linear system in dual flow problems. Mathematica Balkanica. Vol. 21, p. 21-30 (2007).