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1. Introduction

The Rayleigh–Ritz procedure is a well known technique for approximating eigenpairs 
(λ, x) of an n-by-n matrix A over a given subspace K [9,11,15]. It produces approximate 
eigenpairs (μ, u), called the Ritz pairs, that satisfy the Galerkin condition
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Au− μu ⊥ K, u ∈ K.

This is done by solving an s-by-s eigenvalue problem

K∗AKc = μK∗Kc, (1)

where K is a matrix whose columns contain a basis of K and s = dim(K) << n. The 
eigenvalues μ of the projected problem (1), called the Ritz values, represent approxima-
tions to the eigenvalues λ of A. The associated eigenvectors x are approximated by the 
Ritz vectors u = Kc.

For a Hermitian matrix A, a general a priori bound that describes the approximation 
quality of Ritz vectors is due to Saad [11, Theorem 4.6]. The bound shows that the 
proximity of a Ritz vector u to an exact eigenvector x is determined essentially by the 
angle between this eigenvector and the subspace K, defined as

∠(x,K) = min
y∈K,y �=0

∠(x, y). (2)

This result (in a slightly generalized form) is stated in Theorem 1.

Theorem 1. (See Saad [11].) Let (λ, x) be an eigenpair of a Hermitian matrix A and 
(μ, u) be a Ritz pair with respect to the subspace K. Assume that Θ is a set of all the 
Ritz values and let PK be an orthogonal projector onto K. Then

sin∠(x, u) ≤
√

1 + γ2

δ2 sin∠(x,K), (3)

where γ = ‖PKA(I − PK)‖ and δ is the distance between λ and the Ritz value other 
that μ, i.e.,

δ = min
μj∈Θ\μ

|λ− μj |. (4)

Throughout, ‖ · ‖ denotes either the spectral or the Frobenius norm of a matrix; or 
a vector’s 2-norm, depending on the context. The matrix Frobenius norm will be denoted 
by ‖ · ‖F .

Bound (3) is often referred to as “Saad’s bound” in literature, e.g., [2,16]. It was later 
extended by Stewart [16] to invariant subspaces of general matrices.

Theorem 2. (See Stewart [16].) Let X be an invariant subspace of a (possibly non-
Hermitian) matrix A. Let U be a Ritz subspace1 and V its orthogonal complement in K. 
Then

1 Let (M, U) be a matrix pair, such that all columns of U are in K and AU − UM ⊥ K. Then the Ritz 
subspace U ⊆ K is defined as a column space of U . If A is Hermitian, then U is a subspace spanned by Ritz 
vectors.
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sin∠(X ,U) ≤
√

1 + γ2

δ2 sin∠(X ,K), (5)

with γ = ‖PKA(I − PK)‖ and δ defined by

δ = inf
‖Z‖=1

‖(V ∗AV )Z − Z(X∗AX)‖, (6)

where X and V are arbitrary orthonormal bases of X and V, respectively.

The angle between two subspaces in (5) is defined as

∠(X ,K) = min
x∈X ,x �=0
y∈K,y �=0

∠(x, y). (7)

Note that if A is Hermitian and X , U are one-dimensional subspaces spanned by an 
eigenvector x and a Ritz vector u, respectively, then the values of δ in (4) and (6)
coincide; and Theorem 2 reduces to Theorem 1.

The Ritz pairs (μ, u) are known to be best suited for approximating the extreme 
eigenpairs of A, i.e., those (λ, x) that correspond to λ near the boundary of A’s spec-
trum, further denoted by Λ(A). If interior eigenpairs are wanted, then the Rayleigh–Ritz 
procedure may not be appropriate; it can produce “spurious” or “ghost” Ritz values [7,
13,15].

This problem, however, can be fixed by the use of the harmonic Rayleigh–Ritz 
procedure [7,8,15]. Given a shift σ pointing to a location inside Λ(A), the harmonic 
Rayleigh–Ritz scheme aims at finding the harmonic Ritz pairs (θ, v) that approximate 
the eigenpairs (λ, x) of A associated with the eigenvalues λ closest to σ. This is fulfilled 
by imposing the Petrov–Galerkin condition

Av − θv ⊥ (A− σI)K, v ∈ K, (8)

which, similar to (1), gives an s-by-s eigenvalue problem. In particular, if A is Hermitian, 
this eigenvalue problem is of the form

K∗(A− σI)2Kc = ξK∗(A− σI)Kc. (9)

The eigenpairs (ξ, c) of (9) yield the harmonic Ritz pairs (θ, v), where θ = ξ + σ is a 
harmonic Ritz value and v = Kc is the corresponding harmonic Ritz vector.

In this paper, we present a Saad’s type bound for harmonic Ritz vectors of a Hermitian 
matrix A. It shows that, along with ∠(x, K), the closeness of the harmonic Ritz vectors to 
the exact eigenvectors generally depends on the spectral condition number of A −σI. This 
property of the harmonic Rayleigh–Ritz procedure is fundamentally different from the 
standard Rayleigh–Ritz which, according to Theorem 1, is not affected by conditioning 
of the (shifted) operator.
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Our finding has a practical implication. Namely, difficulties related to a poor con-
ditioning of algebraic systems are commonly mitigated by the use of preconditioners; 
e.g., [4,10]. Therefore, motivated by the dependence on the condition number, one can 
expect to improve the harmonic Rayleigh–Ritz approximations by properly precondi-
tioning the procedure.

A possible way to blend preconditioning directly into the harmonic Rayleigh–Ritz 
scheme was proposed in [19]. There, the authors introduce the T -harmonic Rayleigh–Ritz 
procedure, which is defined by the Petrov–Galerkin condition (8) with respect to the 
inner product ( · , · )T = ( · , T ·), where T is a Hermitian positive definite (HPD) 
preconditioner. Within this framework, the eigenpairs of A are approximated by the 
T -harmonic Ritz pairs (θ, v), such that

Av − θv ⊥T (A− σI)K, v ∈ K, (10)

where ⊥T denotes orthogonality in the T -inner product. If A is Hermitian, the procedure 
amounts to solving an s-by-s eigenvalue problem

K∗(A− σI)T (A− σI)Kc = ξK∗(A− σI)TKc. (11)

The T -harmonic Ritz values are then given by θ = ξ + σ, whereas the T -harmonic Ritz 
vectors are defined by v = Kc.

In the present work, we address an idealized situation where the HPD preconditioner 
T commutes with A. In this case, our generalization of the Saad’s bound can further 
be easily extended to the T -harmonic Rayleigh–Ritz. We show that, along with ∠(x, K), 
the proximity of the T -harmonic Ritz vectors to the exact eigenvectors depends on the 
condition number of the matrix T 1/2(A −σI). In particular, this means that the approx-
imation quality can be improved in practice by properly choosing a preconditioner T . 
We briefly discuss several possibilities for defining T , including the absolute value pre-
conditioning [18,20].

Finally, we note that other generalizations of the Saad’s bound on the harmonic Ritz 
vectors were obtained in [2,5]. These results, however, aim at general matrices A and as a 
consequence do not capture certain peculiarities of the Hermitian case. In particular, the 
bounds in [2,5] do not reveal the dependence on the condition number. Furthermore, they 
fail to imply that the harmonic Ritz vectors necessarily converge to the exact eigenvectors 
as ∠(x, K) decreases.

The paper is organized as following. Section 2 presents our main result. Related work, 
such as [2,5], is discussed in Section 3. Section 4 provides an extension of the main 
theorem on eigenspaces associated with multiple eigenvalues. In Section 5, we consider 
the case of the T -harmonic Rayleigh–Ritz and derive the Saad’s bound for commuting 
A and T . Throughout, we assume that A is Hermitian.
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2. A bound for harmonic Ritz vectors

We start with a lemma that provides a two-sided bound on the angle between an 
eigenvector x and an arbitrary vector y in terms of ∠(x, Ay). This bound will be crucial 
for deriving our main result.

Lemma 1. Let (λ, x) be an eigenpair of a nonsingular Hermitian matrix A. Then for any 
vector y, we have

|λ/λmax| sin∠(x,Ay) ≤ sin∠(x, y) ≤ |λ/λmin| sin∠(x,Ay), (12)

where λmin and λmax are the smallest and largest magnitude eigenvalues of A, respec-
tively.

Proof. Let us fist introduce the notation φ = ∠(x, y), φA = ∠(x, Ay) and observe that 
φA = 0 if and only if φ = 0. Hence, if φ = 0 then bound (12) is trivial. Therefore, in 
what follows, we consider only the case where 0 < φ ≤ π/2.

Without loss of generality, we assume that both x and y are unit vectors. Then, since 
x is an eigenvector, we observe that

cosφ = |x∗y| =
∣∣∣∣x∗Ay

λ

∣∣∣∣ =
(
‖Ay‖
|λ|

)(
|x∗Ay|
‖Ay‖

)
=

(
‖Ay‖
|λ|

)
cosφA,

where cosφ = |x∗y| and cosφA = |x∗Ay|/‖Ay‖. This relation implies that

sin2 φ

sin2 φA
= sin2 φ

1 − cos2 φA
= ‖Ay‖2 sin2 φ

‖Ay‖2 − λ2 cos2 φ. (13)

Let y = x(x∗y) + w(w∗y) be a representation of y in terms of the eigenvector x

and a unit vector w orthogonal to x. Then ‖Ay‖2 = λ2 cos2 φ +
(
w∗A2w

)
sin2 φ, where 

sin2 φ = |w∗y|2 = cos2 ∠(w, y). Substituting this expression into the right-hand side 
of (13) gives

sin2 φ

sin2 φA
=

(
λ2

w∗A2w

)
cos2 φ + sin2 φ. (14)

By the Courant–Fischer theorem [9,11], a2
0 ≤ λ2/(w∗A2w) ≤ a2

1, where

a2
0 = min

q∈x⊥,
‖q‖=1

λ2

q∗A2q
= λ2

max
λj∈Λ(A)\λ

λ2
j

, (15)

and
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a2
1 = max

q∈x⊥,
‖q‖=1

λ2

q∗A2q
= λ2

min
λj∈Λ(A)\λ

λ2
j

. (16)

Thus, from (14)–(16), we obtain

a2
0 cos2 φ + sin2 φ ≤ sin2 φ

sin2 φA
≤ a2

1 cos2 φ + sin2 φ. (17)

Let us now consider the function f(z; a) = a2 cos2 z+sin2 z, where z is a variable and 
a2 is a fixed positive parameter. Then (17) can be written as

f(φ; a2
0) ≤

sin2 φ

sin2 φA
≤ f(φ; a2

1). (18)

Hence, for any 0 < φ ≤ π/2,

min
z∈[0,π/2]

f(z; a2
0) ≤

sin2 φ

sin2 φA
≤ max

z∈[0,π/2]
f(z; a2

1). (19)

It is easy to check, by differentiation, that f(z; a2) is monotonically increasing on 
[0, π/2] if a2 ≤ 1. If a2 ≥ 1, then the function is decreasing.

From (15), we see that a2
0 < 1 if λ �= λmax, where λmax is an eigenvalue of A of the 

largest absolute value. Therefore, in this case, f(z; a2
0) is increasing on [0, π/2] and its 

minimum is given by f(0; a2
0) = λ2/λ2

max. At the same time, if λ = λmax, then a2
0 ≥ 1, 

and, hence, f(z; a2
0) is decreasing on [0, π/2]. Therefore, the minimum is delivered by 

f(π/2; a2
0) = 1. Thus, we get

min
z∈[0,π/2]

f(z; a2
0) =

{
λ2/λ2

max, if λ �= λmax,

1, if λ = λmax.
(20)

After combining the both cases in (20), we conclude that

min
z∈[0,π/2]

f(z; a2
0) = λ2/λ2

max. (21)

Similarly, by (16), a2
1 > 1 if λ �= λmin, where λmin denotes an eigenvalue of A of the 

smallest absolute value; and a2
1 ≤ 1 otherwise. By applying exactly the same argument, 

based on the monotonicity of f(z; a2
1), as above, we obtain

max
z∈[0,π/2]

f(z; a2
1) = λ2/λ2

min. (22)

Substituting (21) and (22) into (19) and taking the square root of all parts of the in-
equality gives (12). �
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Note that Lemma 1 suggests that, in particular, if (λ, x) is an eigenpair corresponding 
to the smallest magnitude eigenvalue, then ∠(x, y) ≤ ∠(x, Ay), i.e., the approximation 
quality of a vector y does not improve after multiplication with A. On the other hand, if 
(λ, x) is associated with the largest magnitude eigenvalue, then ∠(x, y) ≥ ∠(x, Ay). The 
latter is not surprising, because a step of the power method applied to y is expected to 
yield a better approximation to the dominant eigenvector.

Given a subspace K, the following corollary relates ∠(x, K) and ∠(x, AK).

Corollary 1. Let (λ, x) be an eigenpair of a nonsingular Hermitian matrix A. Then for 
any subspace K of Cn, we have

sin∠(x,AK) ≤ |λmax/λ| sin∠(x,K). (23)

Proof. From the left-hand side of (12), we have

sin∠(x,Ay) ≤ |λmax/λ| sin∠(x, y).

This inequality holds for any vector y. In particular, it is true for some y∗ ∈ K that 
yields the minimum of ∠(x, y) over all y in K. By definition (2), ∠(x, y∗) is exactly the 
angle between the vector x and the subspace K. Thus, we obtain

sin∠(x,Ay∗) ≤ |λmax/λ| sin∠(x,K). (24)

On the other hand,

∠(x,AK) = min
y∈K,y �=0

∠(x,Ay) ≤ ∠(x,Ay∗).

Therefore, sin∠(x, AK) ≤ sin∠(x, Ay∗). Combining this inequality with (24) leads 
to (23), which completes the proof. �

We are now ready to state the main result.

Theorem 3. Let (λ, x) be an eigenpair of a Hermitian matrix A and (θ, v) be a harmonic 
Ritz pair with respect to the subspace K and shift σ /∈ Λ(A). Assume that Θ is a set of 
all the harmonic Ritz values and let PQ be an orthogonal projector onto Q = (A −σI)K. 
Then

sin∠(x, v) ≤ κ(A− σI)
√

1 + γ2

δ2 sin∠(x,K), (25)

where γ = ‖PQ(A − σI)−1(I − PQ)‖,

κ(A− σI) =
max

λj∈Λ(A)
|λj − σ|

min |λj − σ| , (26)

λj∈Λ(A)
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and

δ = min
θj∈Θ\θ

∣∣∣∣ θj − λ

(λ− σ)(θj − σ)

∣∣∣∣ . (27)

Proof. We first observe that the eigenvalue problem (9) can be formulated as

(SK)∗S−1(SK)c = τ(SK)∗(SK)c, S = A− σI, (28)

where the matrix S is nonsingular because σ /∈ Λ(A). Each eigenpair (τ, c) of (28) yields 
an eigenpair (ξ, c) of (9) with ξ = 1/τ . Thus, given (τ, c), the corresponding harmonic 
Ritz pair (θ, v) is defined by θ = 1/τ + σ and v = Kc.

At the same time, problem (28) corresponds to the Rayleigh–Ritz procedure for the 
matrix S−1 with respect to the subspace Q = SK, in which case a Ritz pair is given by 
(τ, Sv), where v = Kc is the harmonic Ritz vector. The eigenvalues of S−1 are related to 
the eigenvalues λ of A as 1/(λ −σ), and the corresponding eigenvectors x coincide. Then 
Theorem 1 guarantees that for an eigenpair (1/(λ −σ), x) of S−1 and a Ritz pair (τ, Sv),

sin∠(x, Sv) ≤
√

1 + γ2

δ2 sin∠(x,Q), (29)

with γ = ‖PQS
−1(I − PQ)‖ and, since τ = 1/(θ − σ),

δ = min
θj∈Θ\θ

| 1
λ− σ

− 1
θj − σ

| = min
θj∈Θ\θ

∣∣∣∣ θj − λ

(λ− σ)(θj − σ)

∣∣∣∣ .
Clearly, if (λ, x) is an eigenpair of A then (λ − σ, x) is an eigenpair of S. Therefore, 

recalling that Q = SK, we can apply Corollary 1 with respect to S to bound sin∠(x, Q)
in (29) from above by a term proportional to sin∠(x, K). As a result, from (29), we get

sin∠(x, Sv) ≤
max

λj∈Λ(A)
|λj − σ|

|λ− σ|

√
1 + γ2

δ2 sin∠(x,K). (30)

On the other hand, by Lemma 1, also applied with respect to S, we obtain

sin∠(x, v) ≤ |λ− σ|
min

λj∈Λ(A)
|λj − σ| sin∠(x, Sv). (31)

The desired bound (25) then follows from (30) and (31). �
Theorem 3 shows that the approximation quality of the harmonic Rayleigh–Ritz pro-

cedure can be hindered by a poor conditioning of A −σI. In particular, this can happen 
if the shift σ is chosen to be close to an eigenvalue of A.
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Furthermore, the structure of the quantity δ in (27) suggests that the proximity of the 
harmonic Ritz vectors to exact eigenvectors can be affected by clustering of A’s eigen-
values, in which case δ can be close to zero. The smallness of δ can also be caused by 
a large difference |λ − σ| in the denominator of (27). This indicates that the harmonic 
Rayleigh–Ritz scheme should be most efficient for approximating the eigenpairs associ-
ated with the eigenvalues closest to a given shift σ. Note that δ is finite, as σ �= λ and 
θj �= σ [8, Theorem 2.2].

Bound (25) implies that a harmonic Ritz vector v must approach the exact eigenvector 
x as the angle between x and the subspace K decreases, provided that there is only one 
harmonic Ritz value that converges to the targeted eigenvalue λ. In the opposite case, 
which can occur if λ is a multiple eigenvalue, the quantity δ converges to zero (the set 
Θ in (27) assumes repetition of multiple harmonic Ritz values). Hence, in this setting, 
bound (25) may not guarantee that ∠(x, v) is small whenever ∠(x, K) is sufficiently 
small. This limitation, however, is natural as it reflects the fact that the direction of x
is not unique in the case of a multiple λ and that the harmonic Ritz vector can tend 
to approximate any other element of the associated eigenspace. A proper extension of 
Theorem 3, which gives a meaningful bound in the case where λ has multiplicity greater 
than 1, will be considered below in Section 4.

The result of Theorem 3 is very general in that it holds for any choice of the sub-
space K. Hence, it is rather pessimistic. In particular, practical eigensolvers construct 
the subspace K, often called the trial or search subspace, very carefully, in such a way 
that it does not contain contributions from unwanted eigenvectors.

We address this practical setting in the following corollary. It shows that if K is chosen 
from an invariant subspace of A associated with only a part of its spectrum, which 
however contains the wanted eigenvalues, then the condition number in the right-hand 
side of (25) can be reduced.

Corollary 2. Let X be a matrix whose columns represent an orthonormal basis of an 
invariant subspace of A associated with a subset ΛX(A) ⊆ Λ(A) of its eigenvalues, and 
assume that K ⊆ range(X). Let (λ, x) be an eigenpair of A, such that λ ∈ ΛX(A), and 
let (θ, v) be a harmonic Ritz pair with respect to K and σ /∈ ΛX(A). Assume that Θ
is a set of all the harmonic Ritz values and let PQ be an orthogonal projector onto 
Q = X∗(A − σI)K. Then

sin∠(x, v) ≤ κ(X∗AX − σI)
√

1 + γ2

δ2 sin∠(x,K), (32)

where γ = ‖PQ(X∗AX − σI)−1(I − PQ)‖,

κ(X∗AX − σI) =
max

λj∈ΛX(A)
|λj − σ|

min
λj∈ΛX(A)

|λj − σ| , (33)

and δ is defined in (27).
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Proof. Since K ⊆ range(X), a basis K of this subspace can be expressed as K = XW , 
where W is a k-by-s matrix, with k being the number of columns in X and s = dim(K). 
Substituting K = XW into (9), and using the fact that the columns of X are orthonormal 
and span an invariant subspace of A, gives

W ∗(X∗AX − σI)2Wc = ξW ∗(X∗AX − σI)Wc. (34)

This eigenvalue problem corresponds to the harmonic Rayleigh–Ritz procedure for the 
matrix X∗AX with respect to the subspace W = range(W ) ⊆ C

k and shift σ. The 
eigenvalues of X∗AX are exactly the eigenvalues λ of A in ΛX(A), whereas the associated 
eigenvectors x̂ are related to those of A by x = Xx̂.

The harmonic Ritz pairs (θ, ̂v) of X∗AX are defined by the eigenpairs of (34), such 
that θ = ξ+σ and v̂ = Wc. Then, by Theorem 3, applied with respect to X∗AX and W, 
for each eigenpair (λ, ̂x) of X∗AX and a harmonic Ritz pair (θ, ̂v),

sin∠(x̂, v̂) ≤ κ(X∗AX − σI)
√

1 + γ2

δ2 sin∠(x̂,W), (35)

where κ(X∗AX − σI) is defined in (33) and γ = ‖PQ(X∗AX − σI)−1(I − PQ)‖ with 
Q = (X∗AX−σI)W = X∗(A −σI)XW = X∗(A −σI)K, since K = XW. The quantity δ
is given by (27), where the set Θ of the harmonic Ritz values of X∗AX with respect to W
coincides with the harmonic Ritz values of A over K. But ∠(x̂, ̂v) = ∠(Xx̂, Xv̂) = ∠(x, v), 
since X has orthonormal columns and Xv̂ = XWc = Kc = v, where v is a harmonic 
Ritz vector of A with respect to K associated with the harmonic Ritz value θ. Similarly, 
∠(x̂, W) = ∠(Xx̂, XW) = ∠(x, K). Thus, (32) follows from (35). �

In particular, Corollary 2 implies that choosing K from the invariant subspace of A
associated with the eigenvalues {λ1, λ2, . . . , λk} that are closest to σ, such that |λ1−σ| ≤
|λ2−σ| ≤ . . . ≤ |λk−σ|, yields the effective condition number of |λk−σ|/|λ1−σ|, which 
can be much lower than κ(A − σI) = |λn − σ|/|λ1 − σ| suggested by Theorem 3, where 
λn is an eigenvalue of A that is the most distant from σ. In practice, such a choice of K
is achieved by damping out the unwanted eigenvector components from a trial subspace, 
e.g., using filtering or preconditioning techniques; e.g., [3,6,14,17,19].

3. Related work

Other bounds for the harmonic Ritz vectors were established in [2,5]. These results 
are more general than (25) in that they hold for any A, which can be non-Hermitian. 
However, as we will see below, in the Hermitian case, which is the focus of this paper, 
the presented bound (25) turns out to be more descriptive.
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In particular, if A is Hermitian, the result of [2] states that

sin∠(x, v) ≤
√

1 + γ2
1‖B−1‖2

sep(λ,G)2 sin∠(x,K), (36)

where B = K∗(A − σI)K, γ1 = ‖PK(A − σI)(A − λI)(I − PK)‖, and PK denotes an 
orthogonal projector onto K. The quantity

sep(λ,G) = ‖(G− λI)−1‖−1

describes separation of the targeted eigenvalue λ from the harmonic Ritz values different 
from the one associated with v, which are the eigenvalues of G; see [2] for the precise 
definition of G.

The result of [5] suggests that

sin∠(x, v) ≤
(

1 + 2‖B−1‖2γ2
2√

1 − sin2 ∠(x,K)sep(λ,G)

)
sin∠(x,K), (37)

where, if A is Hermitian, the matrix B = K∗(A − σI)K is the same as in (36) and γ2
is the maximum value of |λ − σ| over all eigenvalues λ of A. Similarly, sep(λ, G) gives a 
separation of λ from the unwanted harmonic Ritz values.

Both (36) and (37) share a number of similarities with the bound (25) of this paper. 
In particular, all of them show that the approximation quality of a Ritz vector depends 
on ∠(x, K), separation of λ, and the choice of the shift σ, which should not be too close 
to an eigenvalue.

However, the main difference of (25) is that it eliminates the dependence of the bound 
on the norm of B−1 = (K∗(A −σI)K)−1. This norm can generally be large or unbounded, 
even if σ is well chosen, the subspace K contains a good eigenvector approximation, and 
the corresponding eigenvalue is well separated. As a result, bound (25) guarantees that, 
if λ is a simple eigenvalue, a harmonic Ritz vector v must converge to the eigenvector x
as the angle between K and x decreases (the same conclusion for eigenvalues of a higher 
multiplicity is obtained in the next section). By contrast, neither (36) nor (37) can lead to 
this conclusion without an additional assumption on the uniform boundedness of ‖B‖−1; 
see [2,5].

4. Extension on eigenspaces

As has already been discussed in Section 2, bound (25) is not useful if the targeted 
eigenvector x corresponds to an eigenvalue λ of multiplicity greater than 1. In this case, 
instead of an individual eigenvector x, the focus should be shifted on the eigenspace X
associated with λ. In particular, a question to ask is whether there exist a subspace V
spanned by harmonic Ritz vectors extracted from K, which gives a good approximation 
to X , provided that K contains a good approximation to the wanted eigenspace X .
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We note that a similar limitation is also true for the original Saad’s bound of The-
orem 1. Fortunately, the Stewart’s Theorem 2 suggests an appropriate extension on 
eigenspaces, which is stated in the following corollary.

Corollary 3. Let X be an eigenspace associated with an eigenvalue λ of A, and let U be a 
subspace spanned by Ritz vectors associated with Ritz values Θk = {μ1, μ2, . . . , μk} with 
respect to K. Assume that Θ is a set of all the Ritz values and let PK be an orthogonal 
projector onto K. Then

sin∠(X ,U) ≤
√

1 + γ2

δ2 sin∠(X ,K), (38)

where γ = ‖PKA(I − PK)‖F and δ is defined by

δ = min
μj∈Θ\Θk

|λ− μj |. (39)

Proof. We apply Theorem 2 to the subspaces X and U , such that X is an eigenspace of 
λ and U is the Ritz subspace associated with Θk; and choose ‖ · ‖ to be the Frobenius 
norm. This immediately yields bound (38), where γ = ‖PKA(I − PK)‖F . It then only 
remains to determine the value of δ.

Using the fact that X is an eigenspace of λ, from (6), we obtain

δ2 = min
‖Z‖F =1

‖(V ∗AV )Z − Z(X∗AX)‖2
F = min

‖Z‖F =1
‖(V ∗AV )Z − λZ‖2

F ,

where the columns of X and V represent orthonormal bases of X (i.e., AX = λX) and 
of the orthogonal complement of U in K, respectively. If m is the multiplicity of λ and s
is the dimension of K, then Z is an (s − k)-by-m matrix. Thus, the above equality can 
be written as

δ2 = min
‖z1‖2+...+‖zm‖2=1

m∑
i=1

‖(V ∗AV − λI)zi‖2

= min
‖z1‖2+...+‖zm‖2=1

m∑
i=1

((V ∗AV − λI)2zi, zi), (40)

where zi denote the columns of Z. By the Courant–Fischer theorem [9,11],

((V ∗AV − λI)2zi, zi) ≥ ζ2‖zi‖2, i = 1, . . . ,m;

where ζ2 is the smallest eigenvalue of (V ∗AV − λI)2. Therefore,

m∑
((V ∗AV − λI)2zi, zi) ≥ ζ2

m∑
‖zi‖2. (41)
i=1 i=1
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Taking minimum of both sides of (41) over vectors zi, such that 
∑m

i=1 ‖zi‖2 = 1, gives 
the inequality

min
‖z1‖2+...+‖zm‖2=1

m∑
i=1

((V ∗AV − λI)2zi, zi) ≥ ζ2,

which turns into equality if all zi are set to an eigenvector associated with the eigen-
value ζ2, normalized to have a norm of 1/

√
m. Hence,

min
‖z1‖2+...+‖zm‖2=1

m∑
i=1

((V ∗AV − λI)2zi, zi) = ζ2,

and, from (40), we conclude that δ2 = ζ2. But the eigenvalues of V ∗AV are the 
Ritz values with respect to K that are different from those in Θk. Therefore, ζ2 =
minμj∈Θ\Θk

(λ − μj)2, which gives (39), and completes the proof. �
Note that a similar statement can be obtained from Theorem 2 using the spectral 

norm in the definition of γ and δ. In this case, one arrives at bound (38) with γ =
‖PKA(I − PK)‖, where ‖ · ‖ is the spectral norm. However, the separation constant δ

will no longer be of the form (39), and instead should be determined according to (6), 
with X∗AX = λI, which is somewhat less intuitive. For this reason, we prefer to use the 
Frobenius norm in Corollary 3.

In order to extend Theorem 3 on eigenspaces, we will need the following result, which 
is an immediate corollary of Lemma 1.

Corollary 4. Let X be an eigenspace associated with an eigenvalue λ of a nonsingular 
Hermitian matrix A. Then for any subspace Y, we have

|λ/λmax| sin∠(X , AY) ≤ sin∠(X ,Y) ≤ |λ/λmin| sin∠(X , AY), (42)

where λmin and λmax are the smallest and largest magnitude eigenvalues of A, respec-
tively.

Proof. Let vectors x∗ ∈ X and y∗ ∈ Y deliver the minimum of ∠(x, y) for all x ∈ X
and y ∈ Y, so that, by definition (7), ∠(x∗, y∗) = ∠(X , Y). Since x∗ is an eigenvector 
corresponding to λ, we can readily apply inequality (12) of Lemma 1 with x = x∗ and 
y = y∗. In particular, the left-hand side of (12) yields the bound

|λ/λmax| sin∠(x∗, Ay∗) ≤ sin∠(X ,Y). (43)

At the same time, by definition (7),

∠(X , AY) = min
x∈X ,x �=0

∠(x,Ay) ≤ ∠(x∗, Ay∗).

y∈Y,y �=0
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Therefore, after combining the above inequality with (43), we obtain

|λ/λmax| sin∠(X , AY) ≤ |λ/λmax| sin∠(x∗, Ay∗) ≤ sin∠(X ,Y),

which proves the left part of (42). The right part,

sin∠(X ,Y) ≤ |λ/λmin| sin∠(X , AY)

is proved analogously by choosing x∗ and y∗ that give the minimum of ∠(x, Ay) over 
x ∈ X and y ∈ Y and applying the right-hand side of inequality (12) with x = x∗ and 
y = y∗. �

We now state the main result of this section.

Theorem 4. Let X be an eigenspace associated with an eigenvalue λ and let V be a 
subspace spanned by harmonic Ritz vectors associated with harmonic Ritz values Θk =
{θ1, θ2, . . . , θk} with respect to the subspace K and shift σ /∈ Λ(A). Assume that Θ is a set 
of all the harmonic Ritz values and let PQ be an orthogonal projector onto Q = (A −σI)K. 
Then

sin∠(X ,V) ≤ κ(A− σI)
√

1 + γ2

δ2 sin∠(X ,K), (44)

where γ = ‖PQ(A −σI)−1(I−PQ)‖F , κ(A −σI) is the condition number defined in (26), 
and

δ = min
θj∈Θ\Θk

∣∣∣∣ θj − λ

(λ− σ)(θj − σ)

∣∣∣∣ . (45)

Proof. As has been established in the proof of Theorem 3, the harmonic Ritz pairs (θ, v)
of A with respect to K and σ are related to the Ritz pairs (τ, u) of (A − σ)−1 over the 
subspace Q, so that θ = 1/τ+σ and u = (A −σI)v. Therefore, if V is a subspace spanned 
by harmonic Ritz vectors associated with harmonic Ritz values in Θk, then U = (A −σI)V
is a Ritz subspace associated with Ritz values {1/(θ1 − σ), 1/(θ2 − σ), . . . , 1/(θk − σ)}
of (A − σ)−1. Then, from Corollary 3, applied to matrix (A − σ)−1 and subspace Q, 
we obtain

sin∠(X , (A− σI)V) ≤
√

1 + γ2

δ2 sin∠(X ,Q), (46)

where γ = ‖PQ(A −σI)−1(I−PQ)‖F and δ is defined in (45). Applying inequalities (42)
of Corollary 4 (with A replaced by A − σI) to both sides of (46) leads to the desired 
bound (44), where κ(A − σI) is defined in (26). �
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Theorem 4 shows that if λ is a multiple eigenvalue, then there exists a subspace V
spanned by harmonic Ritz vectors that approximates the entire eigenspace X associ-
ated with λ. Moreover, the approximation is improved as the angle between K and X
decreases.

5. A bound for T -harmonic Ritz vectors

As demonstrated in [19], the robustness of an interior eigensolver can be notably 
improved by incorporating a properly chosen HPD preconditioner T into the harmonic 
Rayleigh–Ritz. This was done by replacing the Petrov–Galerkin condition (8) by (10), 
which lead to the T -harmonic Rayleigh–Ritz procedure.

The next theorem shows that our main result can be easily extended to the T -harmonic 
case under the idealized assumption that A and T commute.

Theorem 5. Let (λ, x) be an eigenpair of a Hermitian matrix A and (θ, v) be a T -harmonic 
Ritz pair with respect to the subspace K and shift σ /∈ Λ(A). Let T be an HPD precon-
ditioner, such that TA = AT . Assume that Θ is a set of all the T -harmonic Ritz values 
and let PQ be an orthogonal projector onto Q = T 1/2(A − σI)K. Then

sin∠(x, v) ≤ κ(T 1/2(A− σI))
√

1 + γ2

δ2 sin∠(x,K), (47)

with γ = ‖PQ(A −σI)−1(I−PQ)‖, δ defined in (27), and κ(T 1/2(A −σI)) = |νmax/νmin|, 
where νmin and νmax are the smallest and largest magnitude eigenvalues of T 1/2(A −σI), 
respectively.

Proof. If A and T commute, then (11) can be written as

(T 1/2SK)∗S−1(T 1/2SK)c = τ(T 1/2SK)∗(T 1/2SK)c, S = A− σI. (48)

This corresponds to the Rayleigh–Ritz procedure for S−1 with respect to the subspace 
Q = T 1/2SK, where (τ, T 1/2Sv) is a Ritz pair, and v = Kc is the T -harmonic Ritz 
vector. Thus, Theorem 1 applies. It suggests that for an eigenpair (1/(λ − σ), x) of S−1

and a Ritz pair (τ, T 1/2Sv), we have

sin∠(x, T 1/2Sv) ≤
√

1 + γ2

δ2 sin∠(x,Q), (49)

with γ = ‖PQS
−1(I − PQ)‖ and δ defined in (27), where Θ is the set of all T -harmonic 

Ritz values with respect to K, as τ is related to θ by τ = 1/(θ − σ).
Since T and A commute, the matrix T 1/2S is Hermitian and nonsingular, because 

σ /∈ Λ(A). Moreover, T 1/2S has the same eigenvectors x as A. Therefore, Lemma 1 can 
be applied with respect to T 1/2S, which gives
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sin∠(x, v) ≤
∣∣∣∣ ν

νmin

∣∣∣∣ sin∠(x, T 1/2Sv), (50)

where ν is an eigenvalue of T 1/2S associated with the eigenvector x and νmin is the 
smallest magnitude eigenvalue of T 1/2S. Similarly, by Corollary 1,

sin∠(x,Q) ≤
∣∣∣νmax

ν

∣∣∣ sin∠(x,K). (51)

Combining (50) and (51) with (49) gives the desired bound (48). �
Clearly, the assumption that TA = AT is impractical in general. Nevertheless, the 

result of Theorem 5 is useful in that it provides qualitative guidelines on the practical 
choice of the preconditioner T . For example, it suggests an insight into ideal choices of T , 
discussed below.

A possible option for choosing a commuting HPD preconditioner is T = |A − σI|−1. 
In this case, κ(T 1/2(A − σI)) in (47) turns into κ(A − σI)1/2, i.e., the condition number 
in bound (25) for the conventional harmonic Rayleigh–Ritz is replaced by its square root.

The construction of the exact inverted absolute value is generally infeasible for large 
problems. However, in practice, one can choose T as an approximation to |A −σI|−1. This 
strategy is called the absolute value preconditioning [18,20]. Absolute value precondition-
ers have been successfully constructed and applied for computing interior eigenvalues of 
certain classes of matrices in [19].

Another alternative is to set T = (A − σI)−2. In this case, κ(T 1/2(A − σI)) in (47) is 
annihilated. Thus, in practice, a possible approach is to build T as an approximation of 
(A −σI)−2. This, e.g., relates the construction of T to preconditioning normal equations; 
see [1,12] for a few options. Generally, however, it is hard to say which of the two 
preconditioning options is more efficient in practice; the outcomes are likely to be problem 
dependent.
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